Focal Adhesion Size Uniquely Predicts Cell Migration
نویسندگان
چکیده
منابع مشابه
Focal adhesion size uniquely predicts cell migration.
Focal adhesions are large protein complexes organized at the basal surface of cells, which physically connect the extracellular matrix to the cytoskeleton and have long been speculated to mediate cell migration. However, whether clustering of these molecular components into focal adhesions is actually required for these proteins to regulate cell motility is unclear. Here we use quantitative mic...
متن کاملRhoB regulates cell migration through altered focal adhesion dynamics
The Rho GTPase RhoB has been shown to affect cell migration, but how it does this is not clear. Here we show that cells depleted of RhoB by RNAi are rounded and have defects in Rac-mediated spreading and lamellipodium extension, although they have active membrane ruffling around the periphery. Depletion of the exchange factor GEF-H1 induces a similar phenotype. RhoB-depleted cells migrate faste...
متن کاملMultiscale model predicts increasing focal adhesion size with decreasing stiffness in fibrous matrices.
We describe a multiscale model that incorporates force-dependent mechanical plasticity induced by interfiber cross-link breakage and stiffness-dependent cellular contractility to predict focal adhesion (FA) growth and mechanosensing in fibrous extracellular matrices (ECMs). The model predicts that FA size depends on both the stiffness of ECM and the density of ligands available to form adhesion...
متن کاملSodium arsenite exposure alters cell migration, focal adhesion localization and decreases tyrosine phosphorylation of focal adhesion kinase in H9C2 myoblasts.
Exposure to the environmental toxicant arsenic is reported to produce a variety of effects including disruption of signal transduction pathways, cell proliferation, and apoptosis. This suggests that arsenite may not have specific targets but rather extremely broad effects. The present study was designed to test the hypothesis that arsenite alters signaling involved in focal adhesion structure a...
متن کاملFocal adhesion kinase-dependent focal adhesion recruitment of SH2 domains directs SRC into focal adhesions to regulate cell adhesion and migration
Directed cell migration requires dynamical control of the protein complex within focal adhesions (FAs) and this control is regulated by signaling events involving tyrosine phosphorylation. We screened the SH2 domains present in tyrosine-specific kinases and phosphatases found within FAs, including SRC, SHP1 and SHP2, and examined whether these enzymes transiently target FAs via their SH2 domain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2013
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2012.11.1768